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1 Taylor Series

let f(z) = co+ c12 + cox? + 323 + ... + cpa”

If T differentiate f(x) 3 times:
f"(2)=04+0+0+3-2-1-c3+4-3-2c42x+5-4-3csz® + ...

We see that the terms before c3 are differentiated to 0 because if you differentiate
a constant you get 0 so if you differentiate 22 3 times you get 0. The term with
c3 is a constant because differentiating =3 3 times yields a constant. The terms
after c3 have an x in them, so when you plug in = = 0, they disappear:

0

0
£ (@) a0 =0+ 0+ 0432 1-c5+4-3-2c7 +5-4-362 + ...

This leaves behind /() =3-2-1-¢3.

In other words, if we differentiate f n times and evaluate at x=0:

dm
2 3 1
Fm (2)]z=0 = d—n(co + 1+ cox” + ez + .+ cnx” + Cppr1x™ T 4 )
x ~—— N —
Becomes 0 from differentiation Becomes constant  Becomes 0 from plugging in x=0

The terms before ¢, go to 0 because differentiating (& mumber less than n) p timeg
yields 0. The terms after ¢, go to 0 because differentiating x( number greater than n)
n times yields a term with x which when plugging in x=0 yields 0. The only
non-zero term is the term with ¢, in it.
d’rL
f(n) ()|2=0 = dxin(cnxn)
Doing the power rule n times to 2" yields n(n — 1)(n — 2)...(2)(1)2°, which is
n! so
£ (2)| g0 = cnn!



This means the constant term ¢,, can be written as
1
— — f(n)
Cp = n|f (x)lw:()
We write £ (z)],—0 as f(™(0), so it cleans up a little:

1
— — f(n)
Cn = n'f (0)

Remember with this notation that we are first differentiating f n times with
respect to z and then plugging in x = 0.

Going to our original definition of f(z), we can plug in for the ¢ terms:

7(@) = G /OO + OO + PO + 3OO + . fO(0)a"

= FO)+ PO+ o £/ + 31" (O)" + o+ = [ (0)a"

Using f(z) = i cnx™, we get f(x) = i %f(")(O)x”
n=0 n=0

2 Maclaurin Series

For the Taylor series, we centered f at 0. For the Maclaurin series, we can center
f around any number a and say

fla+h) =co+cih+coh® + c3h® + ... + ¢, h"

f tells you what value you get as you travel variable distance h away from
constant a. Just remember than we are differentiating f with respect to h in
this case. Using the same logic as for the Taylor series, we get

0
F(@+h)heo=04+0+0+3-2lcs+4-3-20+ ...

1
C3 = ? ”'(a+h)|h:0

1
Cn = af(”)(a + h)|n=0

which can be written as .
— = f(n)
en =~/ a)

This yields

Flath) = f(@)+ F(@h+ o f/ (@R + o f (@R 4 fO @



If we write x = a + h, we get

h=z—a

£() = @)+ (@) a—a)+ 5 " (@) w—a) 4 o £ (@) (0—a) ot - O (a) ()"
F) =3 @) - a)"
n=0 "

Note about notation: % = % because x is just h but offset but a constant

a, so with f("(z) such as f"’(z), differentiating with respect to either x or h is
equivalent.



